Design of a tailor‐made platform for syngas bioconversion into polyhydroxybutyrate

نویسندگان

  • Tanja Narancic
  • Kevin E. O'Connor
چکیده

Biodegradable polymers such as polyhydroxybutyrate (PHB) are part of the emerging portfolio of renewable materials, which are addressing the issue of plastic waste. Syngas, as a cheap, renewable and sustainable resource that can be obtained from biomass or waste, is viewed as an excellent feedstock for different bioprocesses, including syngas to PHB bioconversion. However, due to the hazardous nature of syngas, it is of utmost importance to consider safety aspects of the process. This recently developed tailor-made platform for safe syngas fermentation and PHB production addresses safety aspects and demonstrates the importance of robust online and in-line analytical tools allowing for monitoring and controlling of this bioprocess.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liquid Fuel Production from Synthesis Gas via Fermentation Process in a Continuous Tank Bioreactor (CSTBR) Using Clostridium ljungdahlii

The potential bioconversion of synthesis gas (syngas) to fuels and chemicals by microbial cell has attracted considerable attention in past decade. The feasibility of enhancing syngas bioconversion to ethanol and acetate using Clostridium ljungdahlii in a continuous tank bioreactor (CSTBR), kinetics and mass transfer coefficient of carbon monoxide (CO) utilization were evaluated. Two different ...

متن کامل

Tailor‐made PAT platform for safe syngas fermentations in batch, fed‐batch and chemostat mode with Rhodospirillum rubrum

Recently, syngas has gained significant interest as renewable and sustainable feedstock, in particular for the biotechnological production of poly([R]-3-hydroxybutyrate) (PHB). PHB is a biodegradable, biocompatible polyester produced by some bacteria growing on the principal component of syngas, CO. However, working with syngas is challenging because of the CO toxicity and the explosion danger ...

متن کامل

Application of Taguchi Design and Response Surface Methodology for Improving Conversion of Isoeugenol into Vanillin by Resting Cells of Psychrobacter sp. CSW4

For all industrial processes, modelling, optimisation and control are the keys to enhance productivity and ensure product quality. In the current study, the optimization of process parameters for improving the conversion of isoeugenol to vanillin by Psychrobacter sp. CSW4 was investigated by means of Taguchi approach and Box-Behnken statistical design under resting cell conditions. Taguchi desi...

متن کامل

Application of Taguchi Design and Response Surface Methodology for Improving Conversion of Isoeugenol into Vanillin by Resting Cells of Psychrobacter sp. CSW4

For all industrial processes, modelling, optimisation and control are the keys to enhance productivity and ensure product quality. In the current study, the optimization of process parameters for improving the conversion of isoeugenol to vanillin by Psychrobacter sp. CSW4 was investigated by means of Taguchi approach and Box-Behnken statistical design under resting cell conditions. Taguchi desi...

متن کامل

Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillum rubrum.

Hydrogen may be considered a potential fuel for the future since it is carbon-free and oxidized to water as a combustion product. Bioconversion of synthesis gas (syngas) to hydrogen was demonstrated in continuous stirred tank bioreactor (CSTBR) utilizing acetate as a carbon source. An anaerobic photosynthetic bacterium, Rhodospirillum rubrum catalyzed water-gas shift reaction which was applied ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017